## Addition - No Numbers

| Main Year | Children should build their vocabulary with Cuisenaire Rods. The part-whole method and the bar model |
| :--- | :--- |
| Groups |  | should be introduced with Cuisenaire rods. The rods should not be given numerical values. NB - check for signs of colour deficiency/blindness.



| Addition |  |  |  |
| :---: | :---: | :---: | :---: |
| Pre-requisites and explicit pre-practice: <br> 1-1 Correspondence <br> Counting of objects <br> Dividing objects into two groups <br> Understand that the last number counted is the amount in the set. |  |  |  |
| Main Year Groups | Concrete | Pictorial | Abstract |
| R, 1, 2 | Combine a variety of objects to make a whole. <br> Most children should do this step by the end of R. | Children use their own efficient markings to represent the concrete objects. <br> Most children should do this abstract step by the end of Y1 | $4+3=7$7  <br> 4 3 <br> Most children should do this abstract step by the end of Y1 |

## Holding a number and counting on.

## Pre-requisites and explicit pre-practice:

Familiarisation with the number line, looking at patterns, recognising numbers etc.
Oral practice at counting on from a given number
Number recognition
'Holding' a number and understanding that you don't need to start from zero each time.

Children use practical objects with a number line. A bead string will also help.


Most children should do this by the end of $R$,


A bar model that encourages children to count on rather than count all.

Most children should do this by the end of $Y 1$


Abstract number line.
What is 2 more than 4?
What is 4 plus 2?
What is the sum of 4 and 2?

Most children should do this with numbers <20 and with counting back a few steps by the end of $R$
Most children should do this by the end of $Y 1$

## Partition and bridge

## Pre-requisites and explicit pre-practice:

Instant recognition of amounts on a tens frame
Understanding of part-whole
Recall of bonds to 10 -VITAL!
Understanding and fluency with teens numbers as 10 and 'some' more.



Children begin to partition and bridge by using the tens frames

Most children should do this mentally by the end of Y1. It is vital that children know their bonds to 10 before they can master this.


Children use their own marks to draw in a tens frames. They also then sketch their own tens frames.


| 11 |  |  |
| :---: | :---: | :---: |
| 6 | 5 |  |
| 6 | 4 | 1 |

Children make jottings onto abstract calculations before paritioning and bridgeing mentally.

Most children should do this with written scaffold by the end of $Y 2$
Most children should do this mentally by the end of Y3

Use of part-whole and bar model in KS1 for 'missing number' problems.


Children should continue to use the bar model (or part whole) through to Y6 to solve missing number problems in a variety of situaitons:



## Adding O to TO and TO to TO (No crossing boundaries)

## Pre-requisites and explicit pre-practice:

Counting in tens
Mental addition of multiples of ten
Mental addition/recall of adding one-digit numbers to one-digit numbers
Partitioning numbers into tens and ones
Representing numbers with arrow cards, dienes and place value counters.
(20)

## Adding TO to TO (Crossing boundaries - step 1)

## Pre requisites and explicit pre-practice:

Exchanging ones for tens with Dienes and place value counters
Understand that ten ones are the same as one ten.
Mentally adding a number between 11 and 19 inclusive to a multiple of 10

| 3,4 | As above $44+28=$ <br> Children to use Dienes and place value counters to add two 2-digit numbers by combining tens and ones. Place value arrow cards can be used for partitioning. | As above <br> Children represent their calcualtions with drawings. They organise them vertically. | $?$  <br> 44 28 <br> Children represent their calcualtions horizontally and vertically. <br> Most children should do this abstract step by the end of Y3. (This can be with the use of the frame as a scaffold.) |
| :---: | :---: | :---: | :---: |

## Adding TO to TO (Crossing boundaries - step 2)

## Pre-requisites and explicit pre-practice:

Exchanging ones for tens with Dienes and place value counters
Understand that ten ones are the same as one ten.
Mentally adding a number between 11 and 19 inclusive to a multiple of 10 .

Using the frames as for no boindaries.

$44+28=$
Children to use Dienes and place value counters to add two 2-digit numbers by combining tens and ones. They exchange the counters/blocks when the ones column has more than 9 in total.
Most children should do this abstract step by the end of Y3. (This can be with the use of the frame as a scaffold.)


Children represent their calcualtions with drawings. They organise them vertically.

Most children should do this abstract step by the end of Y3. (This can be with the use of the frame as a scaffold.)


Children represent their calcualtions vertically. The bar model will help develop understadning of inverse operations.

Most children should do this abstract step by the end of Y4. (This can be with the use of the frame as a scaffold.)

## Subtraction

## Subtracting Ones

Pre-requisites and explicit pre-practice:
1-1 Correspondence
Counting of objects
Number names
Understanding of more/fewer
Understand that the last number counted is the amount in a set

| Main Year Groups | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| R, 1, 2 | Most children should do this by the end of $R$. |  $(6-2=4)$ <br> Most children should do this by the end of $R$. | $6-2=4$ <br> Most children should do this by the end of Y1 |

## Counting Back

## Pre-requisites and explicit pre-practice:

## Number names

Count backwards from 10
1-1 correspondence
(Children should continue to use counting back when introduced to fractions, decimals and negative numbers in years 4-6)


## Finding the difference

## Pre-requisites and explicit pre-practice:

## Number names

Count backwards from 10
1-1 correspondence
(Children should continue to use counting back when introduced to fractions, decimals and negative numbers in years 4-6)


## Partition and Bridge

## Pre-requisites and explicit pre-practice

Number names
Count backwards from 10
1-1 correspondence
(Children should continue to use counting back when introduced to fractions, decimals and negative numbers in years 4-6)
1, 2, 3 subtract 3

## Regroup Tens and Ones

Pre-requisites and explicit pre-practice:
Number names
Count backwards from 10
1-1 correspondence
Swapping/exchanging ones blocks for tens blocks
2,3
(2, Column Subtraction (No Regrouping)



| Column Subtraction (With Regrouping) - Step 2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3,4 | As above | As above |  |


|  |
| :--- | :--- |
| Pre-requisites and explicit pre-practice: <br> 1-1 Correspondence <br> Counting of objects <br> Dividing objects into two equal groups <br> Understand that the last number counted is the amount in the set. <br> Main <br> Year <br> Groups |
| R, 1 |


|  | Children understand the concept of doubling by taking an amount and making it again. They should be able to explain when resources show a 'not double' and begin to explain how to make it a double. <br> Most children should do this by the end of $R$ (Children are not expected to recite doubles) |  |  |
| :---: | :---: | :---: | :---: |
| 2,3 | Most children should be able to do this (to the relative numbers) by the end of $Y 2$. | Most children should be able to do this (to the relative numbers) by the end of $Y 2$. | Most children should be able to do this (to the relative numbers) by the end of Y3 (including crossing boundaries, e.g. double 27) |

Multiples, Equal Groups, Repeated Addition

Pre-requisites and explicit pre-practice:
1-1 Correspondence
Counting of objects
Dividing objects into two equal groups
Understand that the last number counted is the amount in the set.


Most children should do this by the end of 1 counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .


$$
\begin{aligned}
& 2,4,6,8,10 \\
& 5,10,15,26,25,30 \\
& 2+2+2+2+2=10
\end{aligned}
$$

\[

\]

Most children should do this by the end of Y1

## Understanding Arrays

Pre-requisites and explicit pre-practice: Spatial understanding of equal rows and columns
1,2,3

## 00000 00000

Most children should do this by the end of $Y_{1}$

## 00000 <br> 00000 $5 \times 2=10$

Most children should do this by the end of $Y 2$

## Commutativity

## Pre-requisites and explicit pre-practice:

Understanding of x and $=$
Understanding of the array


Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.


Most children should do this practically by the end of Y2



Most children should do this by the end of Y2
$5+5+5=15$
$3+3+3+3+3=15$
$5 \times 3=15$
$3 \times 5=15$

Most children should do this by the end of 2


## Column Multiplication TO x TO

| 5, |  |  | $x$ 20 4 <br> 30 600 120 <br> 6 120 24 <br> Children should be able to do this by the end of Y4. |
| :---: | :---: | :---: | :---: |

## Division

## Sharing

## Pre-requisites and explicit pre-practice

Understanding of sharing equally
Understanding of repeated addition

| Main Year |
| :--- | :--- | :--- | :--- |
| Groups | Concrete

## Grouping

| Pre-requisites and explicit pre-practice: |
| :--- |
| Understanding of equal groups |
| skip counting for relevant multiples |
| Understanding of repeated addition |
| $\mathrm{R}, 1,2,3$ |

## Short Division

## Pre-requisites and explicit pre-practice:

Secure times tables and related division facts
Understanding of remainders
Understanding of value of place-value counters

| 4,5,6 | With exchanging <br> The left over 100 counter needs to be exchanged for ten 10 counters <br> under the 7. And so on... <br> Most children should be able to do this by the end of Y4 | With exchanging <br> Most children should be able to do this by the end of Y4 | Most children should be able to do this by the end of $Y 4$ |
| :---: | :---: | :---: | :---: |

Pre-requisites and explicit pre-practice:
Mental addition of 2-digit numbers
Understanding of equal groups
Understanding of remainders


